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Abstract—Complex software systems development require ap-
propriate high-level features to better and easily tackle the
new requirements in terms of interactions, concurrency and
distribution. This requires a paradigm change in software en-
gineering and corresponding programming languages. We are
convinced that agent-oriented programming may be the support
for this change by focusing on a small corpus of commonly
accepted concepts and the corresponding programming language
in line with the current developers’ programming practices. This
papers introduces SARL, a new general-purpose agent-oriented
programming language undertaking this challenge. SARL comes
with its full support in the Eclipse IDE for compilation and
debugging, and a new version 2.0 of the Janus platform for exe-
cution purposes. The main perspective that guided the creation
of SARL is the establishment of an open and easily extensible
language. Our expectation is to provide the community with
a common forum in terms of a first working testbed to study
and compare various programming alternatives and associated
metamodels.

Index Terms—Agent-oriented Programming, Programming
Language, Holonic multiagent system, Recursive agents

I. INTRODUCTION

This paper introduces a new general-purpose agent-oriented
programming language (APL) called SARL1. This language
aims at providing the fundamental abstractions for dealing
with concurrency, distribution, interaction, decentralization,
reactivity, autonomy and dynamic reconfiguration. These high-
level features are now considered as the major requirements
for an easy and practical implementation of modern com-
plex software applications. We are convinced that the agent-
oriented paradigm (AOP) holds the keys to effectively meet
this challenge.

Indeed, the ultimate goal of agent-oriented software en-
gineering (AOSE) and programming is the establishment of
a new standard paradigm able to succeed object-oriented
paradigm to ease the development of complex software ap-
plications by providing higher-level abstractions. However, it
is clear that AOP has not yet a significant influence on the
current mainstreams and standards in software programming.
One possible explanation may be that most of contributions in
AOP remain highly theoretical and rather far from industrial

1http://www.sarl.io

concerns and related developers’ programming practices. We
adopt a different perspective capitalizing on previous expe-
riences aspiring to define a small corpus of concepts only
focusing on the key principles. Considering the variety of
existing approaches and meta-models, but also the lack of
established standards in the field of AOSE and more generally
multi-agent systems, our approach remains as generic as
possible and highly extensible to easily integrate new concepts
and features. The idea is not to respond to every issues
immediately but rather to provide a first set of concepts,
the corresponding programming language as well as a set of
tools for supporting its implementation. Our expectations is
to provide the community with a common forum in terms
of a first working testbed to study and compare various
programming alternatives and associated metamodels.

In this perspective, SARL is platform-independent and
agent’s architecture-agnostic. SARL provides a set of agent-
oriented first-class abstractions directly at the language level,
but it was designed to ease the integration and the mapping of
concepts provided by other metamodels. SARL itself exploits
this extension mechanism for defining its own extensions (or-
ganizational, event-driven, etc.). SARL also natively supports
the notion of holonic multiagent systems and recursive agent
(also called Holon), but does not force the developer to use it.

SARL comes with its full support in the Eclipse IDE
for compilation and debugging purposes. We also provide
a first set of tools to support its execution based on the
new version 2.0 of the Janus2 platform, but it can be linked
with other existing agent platforms and frameworks. SARL
remains completely independent from Janus. SARL compiler
generates Java code that can then be integrated within any
agent platforms supporting Java librairies. Janus is one of
them. This new version of Janus integrates and thus benefits
from the last advances and new patterns of Object-oriented
programming like Inversion of Control, event-driven commu-
nication, distributed objects, etc.

The remainder of this article is organized as follows. Sec-
tion II provides an early glimpse of the SARL language and
its main characteristics. The SARL metamodel and its main

2http://www.janusproject.io



Fig. 1. SARL Main Concepts

concepts are then detailed in the following three sections,
each one focusing on one of the fundamental dimensions of a
multiagent system. Section III concentrates on the individual
dimension and the agent abstraction. Section IV addresses the
notion of Interaction. Finally, Section V shows how SARL
provides the developer with the means to exploit the power
of the holonic perspective. Section VI briefly describes the
new version 2.0 of Janus as a VMs for SARL. Section VII
discusses the related works on AOP, before concluding this
paper by presenting the future works in Section VIII.

II. OVERVIEW

The main perspective guiding the creation of SARL is the
establishment of an open and easily extensible language. Such
language should thus provide a reduced set of key concepts
that focuses solely on the principles considered as essential
to implement a multi-agent system. The metamodel of SARL
is based on four main concepts: Agent, Space, Capacity and
Skill. The core metamodel of SARL is presented in Figure 1
and the main concepts are colored in light blue. Each of
these concepts will be detailed in the following sections as
well as the corresponding piece of SARL code to illustrate
their practical use. In this paper, the key definitions of SARL
concepts are presented in bold.

Basically, a Multiagent System (MAS) in SARL is
programmed as a collection of Agents interacting together
in a collection of shared distributed Spaces. Each agent
has a collection of Capacities describing what it is able to
perform, its personal competences [1, 2]. Each Capacity may
then be realized/implemented by various Skills. We can draw
the parallel with the concepts of Interfaces and corresponding
implementation classes in object-oriented languages. To im-
plement specific architectures (like BDI, reasoning, reactive,
hybrid, etc.) developers should develop their own capacities
and corresponding skills providing the agents with new ex-
ploitable features.

Despite its open nature, SARL imposes some fundamental
principles to be respected by the various VMs that wants to
support it. First of all, the implementation of Space must be
fully distributed and the execution layer must be abstracted
from agents. SARL encourages a massively parallel execution
of Agents and Behaviors. SARL is fully interoperable with
Java to easily reuse all the contributions provided by the Java
community, but also to facilitate the integration and evolution

of legacy systems. One of the key principles governing SARL
consists in not imposing a predefined way for Agents to
interact within a Space. Similarly, the way to identify agents
is dependent on the type of Space considered. This allows to
define different types of interaction mechanisms and models
on Spaces, more details on this point in Section IV-B.

Strongly inspired by new languages like Scala3 and Clojure4

but also Ruby, we try to implement in SARL an intuitive syn-
tax with a shallow learning curve. SARL has been developed
on top of Xtext5 that enables to easily build your own domain-
specific language. We thus directly benefits from a working
parser and linker as well as a direct integration in Eclipse. The
complete definition of the SARL’s grammar in Xtext format is
available on GitHub6. Based on Xtext, itself using ANTLR*,
SARL grammar is a LL* deterministic context-free grammar.

The full set of source codes presented in this article is
freely available at https://github.com/sarl/sarl-demos, as well
as a collection of simple demos demonstrating the various
features of SARL. A very simple example of a multiagent
application will be used throughout this article to demonstrate
the possibilities offered by the SARL language and illustrate
its syntax. This application involves two agents: a first agent
called FactorialQueryAgent who asks a second agent
FactorialAgent to calculate the factorial of a given
integer and waits for the result. Once it receives the result,
it displays it and both agents die.

Fig. 2. An Agent in SARL

III. THE AGENT ABSTRACTION, THE INDIVIDUAL
DIMENSION

A. Agent and Behavior

An agent is an autonomous entity having a set of skills to
realize the capacities it exhibits. An agent has a set of built-
in capacities considered essential to respect the commonly
accepted competences of agents, such autonomy, reactivity,

3http://www.scala-lang.org
4http://clojure.org
5https://www.eclipse.org/Xtext/
6https://raw.github.com/sarl/sarl/master/lang/plugins/io.sarl.lang/src/io/sarl/

lang/SARL.xtext



proactivity and social capacities. Figure 2 describes the open
architecture of an Agent in SARL. The full set of Built-In
Capacities (BIC) will be presented in Section III-B. Among
these BICs, is the Behaviors capacity that enables agents to
incorporate a collection of behaviors that will determine its
global conduct. An agent has also a default behavior directly
described within its definition. A Behavior maps a collection
of perceptions represented by Events to a sequence of
Actions. The various behaviors of an agent communicates
using an event-driven approach. An Event is the specification
of some occurrence in a Space that may potentially trigger
effects by a listener (e.g. agent, behavior, etc.).

For clarity reasons, let’s describes the definition of Agent
using our example. Listing 1 presents the definition of the
FactorialAgent and the various events governing its
overall behavior. This agent will wait for other agent’s request
to calculate (Calculate event) a factorial. Once computed
it will notify the result using the ComputationDone event.⌥

1 package i o . s a r l . demos . q u e r y f a c t o r i a l
2 / ⇤ I m p o r t s e c t i o n ⇤ /

3 event F a c t o r i a l {
4 var number : I n t e g e r
5 var v a l u e : I n t e g e r
6 }
7 event C a l c u l a t e {
8 var number : I n t e g e r
9 }

10 event Computat ionDone {
11 var r e s u l t : I n t e g e r
12 }
13 agent F a c t o r i a l A g e n t {
14 uses L i f e c y c l e , Behav io r s , Logging ,

D e f a u l t C o n t e x t I n t e r a c t i o n s
15 var up to : I n t e g e r = 10
16 on I n i t i a l i z e {
17 s e t S k i l l ( Logging , new B as i c C o n s o l e L o g g i n g ( t h i s ) )
18 i n f o ( ” F a c t o r i a l i n i t i a l i z e d ” )
19 }
20 on F a c t o r i a l [ occurrence . number < up to ] {
21 wake ( new F a c t o r i a l => [ number = occurrence .

number . i n c r e m e n t ; v a l u e = occurrence . v a l u e
⇤ ( occurrence . number . i n c r e m e n t ) ] )

22 }
23 on F a c t o r i a l [ occurrence . number == u p t o ] {
24 i n f o ( ” F a c t o r i a l o f ” + up to + ” i s ” +

occurrence . v a l u e )
25 emi t ( new Computat ionDone=>[ r e s u l t = occurrence .

v a l u e ] )
26 k i l l M e
27 }
28 on C a l c u l a t e {
29 t h i s . up to = new I n t e g e r ( occurrence . number ) ;
30 i n f o ( ” Rece ived C a l c u l a t e f o r ” + t h i s . u p to )
31 wake ( new F a c t o r i a l => [ number = 0 ; v a l u e = 1

] )
32 }
33 on D e s t r o y {
34 debug ( ” F a c t o r i a l : I ’m r e a d y t o d i e ” )
35 }
36 def i n c r e m e n t ( nb : I n t e g e r ) : I n t e g e r {
37 nb+1
38 }
39 }⌃ ⇧

Example Code 1. Event and Agent in SARL

An agent is declared with the agent keyword (line 13). In
the agent’s body block, we can declare Mental States (in the
form of attributes), Actions and Behaviors.

The actions an agent can perform can be specified by
Capacities or natively inside the agent body. For instance, in

line 36 a native action increment is defined. The keyword
uses imports the actions defined in Capacities so that they
can be accessed directly as an agent native action.

The FactorialAgent declares an attribute called upto

using the var keyword (line 15). This attribute will be used
by the behaviors to know for which number the agent is
calculating the factorial for. It is important to notice that the
type of upto is actually java.lang.Integer and that we
can then directly use any Java class.

The agent must then declare its perceptions and the se-
quence of actions it wants to perform for each percep-
tion. This is achieved using the clause on <Perception>

[<guard>] {<body>} The FactorialAgent declares
five behaviors (lines 16, 20, 23, 28, 33).

Perceptions for SARL agents take the form of Events and
they can be declared using the event keyword. For instance,
the Calculate event is defined in line 7. Events can carry
information, in our case the number we want the factorial for.

When the agent is spawned and ready for execution, it
will receive an Initialize event (see III-A). This allows
the agent to install new Capacities, access resources, etc. A
detailed description of Capacities and Skills can be found in
Section III-B.

When the Calculate event is perceived (line 28), the
agent can access the event’s instance using the occurrence
keyword. On line 29 it will set the upto attribute using the
information for the Calculate event occurrence. The info
action is imported from the Logging Capacity and simply
prints a string to the console.

Now the agent should start computing the factorial. The Be-
haviors built-in capacity provides the agent with mechanisms
to (un)register new behaviors and fire new internal events
(wake action). To calculate the factorial it will fire an internal
event of type Factorial using the wake action.

Two behaviors are declared for Factorial (line 20
and 23). When an event is perceived, SARL agents ex-
ecute all their behaviors for that event type concurrently.
Behaviors can declare guards to prevent their execution if
required. So the behavior on line 20 will only be executed if
occurrence.number < upto evaluates to true. This
behavior simply calculates the factorial for the next integer
and fires a Factorial event again. It is important to notice
that actions can be called using the first argument as callee.
Therefore one can use increment(1) or 1.increment
indistinctly. This syntax sugar can provide fluent chain of
actions7.

Likewise, when the factorial for the requested number
(stored in upto attribute) is found the behavior on line 23
will be executed. The emit action fires an event in the Default
Space of the Default Context to notify that the Computation
is finished. Details on agent interaction are provided in Sec-
tion IV-B. After that the agent stops its execution using the
killMe action from the Lifecycle capacity.

7This feature comes as a direct result of SARL being based on Xtext and
Xbase.



It is necessary to clearly understand the difference between
wake and emit actions. Wake fires an internal event within
the agent that may be perceived by its own behaviors and its
members when it is composed (more details on this aspect in
Section V-2). While emit action enables to fire an event in a
given space.

Agent’s Lifecycle: SARL does not imposes a specific
agent’s control loop. Indeed, when agents are spawned (by
the host VM or other agent), the VM is in charge of creating
the agent instance and installing the skills associated to the
built-in capacities into the agent. Then, when the agent is
ready to begin its execution, it fires the Initialize event.
This event contains any parameters for the agent’s instance.
Likewise, when the agent has decided to stop its own execution
(using the killMe action from the Lifecycle Capacity), the
VM will fire the Destroy event to enable the agent to release
any resource it may still hold. It is important to notice that
agents cannot kill other agents, not even those that they have
spawned. The key characteristic of Agents is their autonomy
and no other agent should be able to stop its execution without
its consent. The designer is then free to implement any control
or authority protocol for their own application scenario.

B. Capacity and Skill
An Action is a specification of a transformation of

a part of the designed system or its environment. This
transformation guarantees resulting properties if the system
before the transformation satisfies a set of constraints. An
action is defined in terms of pre- and post-conditions. A
Capacity is the specification of a collection of actions. This
specification makes no assumptions about its implementation.
It could be used to specify what an agent can do, what a
behavior requires for its execution, or what a group of agents
as a whole may achieve with its collective behavior. A Skill
is a possible implementation of a capacity fulfilling all the
constraints of this specification. An agent can dynamically
evolve by learning/acquiring new Capacities, but it can also
dynamically change the Skill associated to a given capac-
ity [1, 2]. Acquiring new capacities also enables an agent to
get access to new behaviors requiring these capacities. This
provides agents with a self-adaptation mechanism that allow
them to dynamically change their architecture according to
their current needs and goals.

Listing 2 describes the SARL syntax for defining a basic
capacity Logging with two actions debug and info.
BasicConsoleLogging is one possible skill implement-
ing this capacity. The action setSkill enables the dynamic
installation of a new Skill within the considered agent (see
line 25).⌥

1 / ⇤ . . . ⇤ /

2 c a p a c i t y Logging {
3 def debug ( s : S t r i n g )
4 def i n f o ( s : S t r i n g )
5 }
6

7 s k i l l B as i c Co ns o l e L o g g i n g implemen t s Logging {
8 new ( owner : Agent ){
9 s u p e r ( owner )

10 }

11

12 def debug ( s : S t r i n g ) {
13 System . o u t . p r i n t l n ( ”DEBUG: ” + s )
14 }
15

16 def i n f o ( s : S t r i n g ) {
17 System . o u t . p r i n t l n ( ” INFO : ” + s )
18 }
19 }
20

21 agent F a c t o r i a l Q u e r y A g e n t {
22 uses L i f e c y c l e , Behav io r s , Logging ,

D e f a u l t C o n t e x t I n t e r a c t i o n s
23

24 on I n i t i a l i z e {
25 s e t S k i l l ( Logging , new B as i c Co ns o l e Lo gg in g ( t h i s ) )
26 i n f o ( ” Query s e n t w i th number 5 ” )
27 emi t ( new C a l c u l a t e =>[number = 5 ] )
28 }
29

30 on Computat ionDone {
31 i n f o ( ” Query : R e s u l t o f F a c t o r i a l 5 i s ”+

occurrence . r e s u l t )
32 k i l l M e
33 }
34

35 on D e s t r o y {
36 debug ( ” Query : I ’m r e a d y t o d i e ” )
37 }
38 }⌃ ⇧

Example Code 2. Capacity and Skill in SARL

Built-in Capacities: Every agent in SARL has a set of built-
in capacities considered essential to respect the commonly
accepted competences of agents. These capacities are consid-
ered the main building blocks on top of which other higher
level capacities and skills can be constructed. They are defined
on the SARL language but the skill implementing them are
provided by the VM. The VM is responsible for creating them
and injecting them on the agent before their execution begins.
Therefore, when the agent receives the Initialize event
they are already available.

Figure 3 presents the current six BICs available and the
actions they provide along their signatures:

• ExternalContextAccess provides access to the contexts
that the agent is a part of and actions required to
join/leave new contexts (see Section IV).

• InnerContextAccess provides access to the Inner Con-
text of the Agent. This is keystone for holonic agent
implementation (see Section V).

• Behaviors As previously described, agent can dynam-
ically (un)register behaviors and trigger them with the
wake action. This capacity is closely related to the
InnerContextAccess to enable a high-level abstraction on
holonic MAS development.

• Lifecycle provides actions to spawn new agents on dif-
ferent external contexts (peers) and the Inner Context (as
holonic members) as well as the killMe action to stop
its own execution.

• Schedules enables the agent to schedule tasks for future
or periodic execution.

• The DefaultContextInteractions is actually provided
for convenience. It assumes that the action will be
performed on the agent’s Default Context and its Default
Space. For instance, the emit action is a shortcut for



Fig. 3. Agent’s Built-in Capacities

defaultContext.defaultSpace.emit(...).
Therefore, it is actually created on top of the other five
BICs.

IV. THE INTERACTION ABSTRACTION, THE COLLECTIVE
DIMENSION

A. Context and Spaces
A Context defines the perimeter/boundary of a sub-

system, and gathers a collection of Spaces. In each context,
there is at least one particular Space called Default Space
to which all agents in this context belong. This ensures the
existence of a common shared Space to all agents in the
same context. Each agent can then create specific public
or private spaces to achieve its personal goals. Since their
creation, agents are incorporated into a context called the
Default Context (see the upper part of Fig. 4, level n). For
flat MAS, the concept of Context is relatively transparent to
the developer, generally most applications will simply use the
Default Context. The notion of Context makes complete sense
when the developer is interested in hierarchical MAS and
agents are considered composed or holonic (see Section V).

B. Space and Space Specification
One of the key elements that characterize and differentiate

the main multiagent approaches is how interactions between
agents are described [3]. Some researchers focus on agent-
to-agent interactions and corresponding protocols (e.g. FIPA
ACL and protocols). Within organizational approaches, some
consider the organization as a static partition of agents where
agents interacts in groups through the roles they play (AGR,
CRIO, etc.). Others focus on dynamic organizations and

normative aspects (MOISE, OMNI, SODA, etc.). Another
essential aspect of the interaction is the interaction Agent-
Environment, especially in multiagent-based simulations. Each
of these trends of multi-agent systems has led to numerous
fruitful and innovative contributions. To remain generic, an
APL should therefore not impose a single way of describing
the interaction among agents, but rather attempt to provide
means to implement each of these approaches. It is in this
perspective that the concepts of Space and Space Specification
were defined. A Space is the support of the interaction
between agents respecting the rules defined in a Space
Specification. A Space Specification defines the rules (in-
cluding action and perception) for interacting within a
given set of Spaces respecting this specification.

SARL natively defines a particular type of Space called
Event Space to provide a support to event-driven interactions.
Within an Event Space, agents communicate using Events, the
BIC DefaultContextInteractions provides the agent with the
means to emit and receive event, respectively using the emit
actions and the on keyword in behavior definition. A Default
Space is precisely an Event Space. Janus provides the full
support for event spaces using a fully distributed approach
with dynamic discovery of the participant agents all over the
network.

Within an Event Space, the notion of Scope enables to
precisely control/filter the potential recipients of an event.
A Scope is a predicate used to filter the potentially
called listeners for a given event. The most basic Scope is
represented by a collection of Addresses (Agent, Role, etc.).

Listing 3 presents an example of such an event-driven
communication. The FactorialQueryAgent emits a
Calculate event in the Default Space of its Default Context.
All agents register on this event will receive it. When the
FactorialAgent receives this event, its starts the com-
putation of the factorial, and when the result is available it
forward it to the FactorialQueryAgent by emitting a
ComputationDone event.⌥

1 agent F a c t o r i a l Q u e r y A g e n t {
2 / ⇤ . . . ⇤ /

3 on I n i t i a l i z e {
4 s e t S k i l l ( Logging , new B as i c Co ns o l e Lo gg in g ( t h i s ) ) ;
5 i n f o ( ” Query s e n t w i th number 5 ” )
6 emi t ( new C a l c u l a t e =>[number = 5 ] )
7 }
8 on Computat ionDone {
9 i n f o ( ” Query : R e s u l t o f F a c t o r i a l 5 i s ”+

occurrence . r e s u l t )
10 k i l l M e
11 }
12 / ⇤ . . . ⇤ /

13 }
14

15 agent F a c t o r i a l A g e n t {
16 / ⇤ . . . ⇤ /

17 on F a c t o r i a l [ occurrence . number == up to ] {
18 i n f o ( ” F a c t o r i a l o f ” + up to + ” i s ” +

occurrence . v a l u e )
19 emi t ( new Computat ionDone=>[ r e s u l t = occurrence .

v a l u e ] )
20 k i l l M e
21 }
22 / ⇤ . . . ⇤ /

23 on C a l c u l a t e {
24 t h i s . up to = new I n t e g e r ( occurrence . number ) ;



25 i n f o ( ” Rece ived C a l c u l a t e f o r ” + t h i s . u p to )
26 wake ( new F a c t o r i a l => [ number = 0 ; v a l u e = 1

] )
27 }
28 / ⇤ . . . ⇤ /

29 }⌃ ⇧
Example Code 3. Agent interaction in SARL

Now let’s consider an example to illustrate the potential of
extensibility of SARL to define specific interaction supports.
For instance, to implement the organizational concepts of the
CRIO metamodel [4], the developer can extend SARL by
considering the organization as a particular type of Space
Specification defining a new category of space where agents
can interact only through the roles it plays. These roles can
then be considered as a specialization of Behavior. The group
instance of a given organization will therefore be considered
as a Space, respecting the rules defined in its organizational
specification, in which agent’s identification is performed
according to the different roles they play within the group.

V. RECURSIVE AGENT AND HIERARCHICAL MAS WITH
SARL, THE HOLONIC DIMENSION

Fig. 4. A Holon or a recursive agent in SARL

In 1967, Arthur Koestler coined the term holon as an attempt
to conciliate holistic and reductionist visions of the world. A
holon represents a part-whole construct that can be seen as a
component of a higher level system or as whole composed of
other self-similar holons as substructures [5]. Holonic Systems
grew from the need to find comprehensive construct that could
help explain social phenomena. Since then, it came to be
used in a wide range of domains, including Philosophy [6],
Manufacturing Systems [7], and Multi-Agents Systems [8].

Several works have studied this question and they have
proposed a number of models inspired from their experience
in different domains. In many cases we find the idea of
agents composed of other agents. Each researcher gives a
specific name to this type of agent, [9] discusses individual and
collective agents; meta-agents are proposed by [10]; Agentified
Groups are taken into account in the work of [11]; etc. All of
these are only examples of how researchers have called these
“aggregated” entities that are composed of lower level agents.

More recently, the importance of holonic MAS has been
recognize by different methodologies such as ASPECS [4] or
O-MASE [12].

In SARL, we recognize that agents can be composed of
other agents. Therefore, SARL agents are in fact holons that
can compose each other to define hierarchical or recursive
MAS, called holarchies.

In order to achieve this, SARL agents are self-similar
structures that compose each other via their Contexts. Each
agent defines its own Context, called Inner Context and it
is part of one or more External Contexts. For instance in
Figure 4, agent A is taking part of two External Contexts
(i.e. Default Context and External Context 1) and has its own
Inner Context where agents B, C, D and E evolve.

1) As part of a whole: As mentioned previously, every
agent in SARL evolves in a context. A context enables agents
inside of it to interact via a Default Space and create new
Spaces with specific interaction specifications. When an agent
is spawned it will be created inside a Context that we call
its Default Context. It is important to notice that the Default
Context is not necessarily the same for every agent. It is
defined at the agent’s spawning by its parent. For instance,
in Figure 4, if we assume agent B was spawned by agent A,
A’s Inner Context is B’s Default Context.

At the top level, we consider an omnipresent agent (Root
Agent). The VM will be in charge of spawning the first agents
in the system as members of the Root Agent (see Section VI).

Agents can be part of more than one higher-level agents
(called super-holon) at the same time. ExternalContextAccess
BIC provides agents the mechanisms to join, leave and
access external (super-holon’s) contexts. The process and
decision of how and when agents are accepted to become a
member of the super-holon is left to the designer of the system.
No specific procedure is imposed by SARL.

When an agent joins a new holon, SARL automatically
register the agent in the Default Space of the holon’s context.
Therefore, all members of a super-holon are participants of the
Default Space. This space becomes then a holonic structure
where all agents’ members of the same super-holon can
interact, similar to the Holonic Group defined in [13].

It is important to notice, that Spaces belong to only one
Context. This means that they are visible only to agents that
have access to that context. For instance in Fig. 4 agent F
cannot see, access or even know the Spaces in A’s Inner
Context. This is in fact one of holonic agent’s definition
fundamentals: A holon is seen from the outside as an atomic
entity.

2) As whole for its parts: In fact, every agent defines a
context where other agents can live. Therefore, every agent
can be seen as a part of a larger holon (i.e. any SARL agent)
and at the same time be composed by other holons that exist
in its Inner Context.

Using Fig. 4 as reference, A is the super-holon of the
agents B to E. An important question to answer is how A
interacts or perceives it members. This can be achieved using
the InnerContextAccess BIC. As its name implies, this capacity





gives access to agent’s inner context and all the actions to
modify it (e.g. create new spaces). Other BICs are constructed
on top of it. The Lifecycle Capacity enables an agent to spawn
new agents as peers or members depending on the provided
Default Context for the new Agent.

Likewise, the Behaviors Capacity (discussed in Sec-
tion III-A) uses the Default Space of the InnerContext as
support for inter-behavior communication. This means that an
event fired using the wake action will actually be emitted
inside the Default Space of the Inner Context. Moreover, the
Behaviors Capacity will listen to event in the Default Space of
the InnerContext and show them as perceptions in the super-
holon. Therefore, members’ interactions in the Default Space
of the InnerContext are perceived by their super-holon and
any event fired by the super-holon’s behaviors using wake

can potentially raise reactions of its members.

VI. JANUS V2.0: A DISTRIBUTED RUNTIME
INFRASTRUCTURE OF SARL

SARL language specifies a set of concepts and their
relations. It defines on top of them a collection of Built-
In Capacities for agents. However, the SARL project does
not impose a particular execution infrastructure. We consider
that many different implementations of these concepts can be
provided, and it can help SARL develop faster.

Nevertheless, we provide one of these infrastructures in the
Janus Project. Janus is an open-source multi-agent platform
fully implemented in Java 1.7. Janus version 2.0 was entirely
rewritten to support SARL.

Janus implements all required infrastructure to execute a
MAS programmed using SARL and fulfills its requirements
such as fully distributed, parallel execution of agent’s behav-
iors, automatic discovery of kernels, etc. Janus adopts best
practices in current software development, such as Inversion
of Control8, and profits from new technologies like Distributed
Data Structures9. The main purpose of Janus provides a VM
for SARL MAS, and therefore provides implementations for
all Built-in Capacities.

VII. RELATED WORKS

Authorship of APLs can be attributed to Shoham, who
presented AOP as a new paradigm, a specialization of OOP
promoting a societal view of computation where multiple
agents interact one another [14]. In his vision, an agent is
composed of mental states (beliefs, decisions, capabilities and
obligations) and controlled by agents programs exploiting
basic communication primitives. Since Shoham, a multitude
of APLs based on different metamodels, formalisms and
logics have been proposed. For obvious space reasons, it is
impossible here to cite all of them, the reader can refer to [15]
for a more comprehensive analysis. In this article, we limit
our analysis only to the most notable languages excluding
the agent platforms and frameworks like Jade, Janus, Jack,
etc, since they do not provide first-class abstractions at the

8see https://code.google.com/p/google-guice/
9In-Memory Data Grid like Hazelcast: www.hazelcast.com

language level, but rather extend an existing object-oriented
language usually Java.

One of the major trends that guided the creation of many
APL is based on the concept of BDI agent (also true for
many frameworks such as Jack). BDI [16] force agents to
have a certain level of cognitive and reasoning capabilities,
sometimes undesired in reactive MAS. From our point of view,
BDI [16] remains a specific agent’s architecture. Therefore, a
generic APL must be independent of any agent’s architecture
and provides means to implement all of them. The integration
within SARL of BDI-type or goal-based architectures will
be undertaken in future works. According to our knowledge,
SARL is the first general-purpose APL adopting this approach
trying to remain architecture-independent and fully open.
Within the BDI movement, four main APLs can be mentioned:
ALOO [17] and SimpAL [18], 2APL [19] and 3APL [20],
GOAL [21] and Jason-AgentSpeak [22]. All of them provide
a set of tools to support software applications development.
SimpAL10 provides an Eclipse-based IDE including a compiler
and a runtime support. The 2APL11 programming language
also comes with its corresponding execution platform and an
Eclipse plug-in editor. SARL is generally in agreement with
the definition of agent in simpAL as a state-full task- and
event-driven entity. In SARL, agent’s behaviors also commu-
nicates using an event-driven communication system and may
schedule tasks using the Schedule BIC. However, the major
difference is that SARL do not impose/set this approach, it
is just one capacity among other available to agents to handle
the notion of behavior’s communication. Every developer can
freely decide to develop a different approach and does not
use this capacity. Unlike SARL, BDI-dependent APLs usually
impose a fixed agent’s control loop, like <sense>-<plan>-
<act> in SimpAL, or the deliberation cycle of 3APL.

Within the architecture-independent APL, we may men-
tion GAML agent-oriented language and its corresponding
platform GAMA [23]. GAML is effectively architecture-
independent but it currently focuses on multiagent-based sim-
ulation related issues and cannot now be considered as a
general-purpose APL. Concerning the technology and the
design, SARL and GAML shares the same development
approach based on Xtext.

VIII. CONCLUSION AND FUTURE WORKS

This article presents a new general purpose Agent-Oriented
Programming Language named SARL. The main focus of
SARL is to provide the minimum corpus of concepts required
to define and develop MAS while remaining open and easily
extensible. It also attempts to provide the community with a
forum to study and compare various programming alternatives
and metamodels. It is freely available for evaluation, extension
and development under a permissive license12.

The language offers an extensible and intuitive syntax for
agent and MAS development. SARL recognizes the fact

10http://simpal.sourceforge.net
11http://apapl.sourceforge.net
12http://www.apache.org/licenses/LICENSE-2.0



that the research community has provided a vast number
agent architectures, interaction metamodels, communication
and coordination mechanisms, etc; each with its own benefits.
Therefore a general-purpose agent language should allow these
models to be developed on top of it without imposing any
specific architecture.

A first execution infrastructure is provided using the Janus
platform. Janus allows agents to evolve in a fully distributed
environment, with transparent network communication and
concurrent execution of their behaviors.

SARL also has the associated tooling and IDE support for
the language, making its development easier and with a shal-
low learning curve. Moreover, the language interoperability
with Java let SARL profit from the advances provided by this
community and simplifies legacy systems integration.

Future work will focus on mapping well known agent
architectures (e.g. BDI [16]) and organizational models (e.g.
MOISE [24] and CRIO [4]). We believe that the corpus of
concepts provided in SARL will allow us to map these models
into SARL concepts. Towards this end, work is ongoing to
provide a first organizational extension for the language based
on the CRIO metamodel [4].
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